If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=39
We move all terms to the left:
2x^2+3x-(39)=0
a = 2; b = 3; c = -39;
Δ = b2-4ac
Δ = 32-4·2·(-39)
Δ = 321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{321}}{2*2}=\frac{-3-\sqrt{321}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{321}}{2*2}=\frac{-3+\sqrt{321}}{4} $
| 2019=(20)(b)+(19)(1) | | 37w+2.16w-2.37=3.23 | | (W+48)+(w+48)=4w+4w | | 4x=-20x-3=7 | | 8(2x+3x+20)=-4x+124 | | 7x−9=−4x+90 | | (U+5)+(u+5)=124 | | 3.57x=1.61=4.71-2.63 | | 6m-5=9 | | (V+42)=4v | | 17^m=93 | | 121=13+3x | | 10x-11=43 | | 132+77t=0 | | 3k-3=3-3k | | 60-24x=0 | | 2(4k-4)=3(k+4) | | t2-(t-9)2=9 | | (x-18)+(x-11)+90=180 | | 12(2k-3)=6k | | 2(k-3)=4k+4 | | 6k=5k+22 | | -24-8k=4k | | 5k-7=4k-1 | | -9(w+1)=-72 | | X+2×x=104 | | x²+3x-7=0 | | (1/2)n-(3/14)=(1/28) | | x^2/6=36 | | 5000(1+x)^34=1000000 | | -7x-10-15x=-22x-83 | | 3u-12=45 |